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The form of a particle, which is homogeneous, ®nite, strictly convex, smooth and

centrosymmetric, can uniquely be determined if the leading asymptotic term of

its form factor is known along each direction of reciprocal space. If the central

symmetry is lacking, all the admissible particle forms are among the solutions of

a partial differential equation with given boundary conditions. The possible

practical relevance of this result is discussed.

It is well known that the scattering density of a sample cannot

uniquely be determined from its scattering intensity. This, in

fact, determines only the modulus of the scattering amplitude

while the amplitude's phase remains fully unknown. However,

this ambiguity can drastically be reduced and, in favourable

cases, completely removed if one requires that the scattering

density has some de®nite mathematical properties. For

instance, in the one-dimensional case, it is possible to deter-

mine all the scattering densities that reproduce a given scat-

tering intensity when it is known that they refer to a linear

®nite object (Burge et al., 1976; Requicha, 1980). (For the

three-dimensional case, see Baker et al., 1993.) Similarly, the

knowledge of an appropriate ®nite subset of the diffraction

pattern of a periodic crystal is suf®cient to determine all the

atomic con®gurations that reproduce the scattering intensity

(Cervellino & Ciccariello, 2001) if one assumes that the unit

cell of the crystal consists of a ®nite number of point-like

atoms.

In the realm of small-angle scattering (SAS), the scattering

density is assumed to be a two-value function (Debye et al.,

1957). If we con®ne ourselves to the case of a dilute sample

consisting of a monodisperse collection of identical particles

equally oriented inside the sample, the observed scattering

intensity I�q� takes the form (Guinier & Fournet, 1955)

I�q� � N p��n�2F�q�; �1�
where q is the scattering vector, ��n�2 the contrast, N p the

particle number and F�q� the geometrical form factor of the

particle. F�q� is related toA�q�, the scattering amplitude of the

particle, by

��n�2F�q� � jA�q���2; �2�
with A�q� de®ned by

A�q� � ��n� R ��r� exp�iq � r� dv: �3�
Here, ��r� de®nes the particle form since it is de®ned as being

equal to one when the tip of r is internal to the particle

and equal to zero elsewhere. Clearly, the knowledge of A�q�

uniquely determines ��n���r�, the two functions being related

by a Fourier transformation. But, according to (2), the

observed I�q� does not determine A�q�. It only determines

F�q� aside from the trivial constant C � N p��n�2. None-

theless, the knowledge of the asymptotic form factor along any

direction of reciprocal space allows us to say whether it refers to

a ®nite, homogeneous, strictly convex, smooth and centrosym-

metric particle or not and, in the af®rmative case, to determine

uniquely the particle form. [It is recalled that a particle is

smooth when no edges or corner points are present on its

surface and it is strictly convex when each segment having its

two ends on the particle boundary has the remaining points in

the particle interior.]

To prove this statement, referred to as property I in the

following, it is recalled that, according to equation (11) of

Ciccariello et al. (2000), the asymptotic behaviour of A�qq̂�
reads

A�qq̂� � ÿ 2��n

q2

exp�iq���
��G�q̂��1=2

� exp�iq�ÿ�
��G�ÿq̂��1=2

� �
� o�qÿ2�: �4�

Here, q �� jqj� and q̂ �� q=q� denote the modulus and the

direction of the scattering vector q, o�qÿ2� a contribution

decreasing faster than qÿ2 as q!1 and �G�q̂� (�G�ÿq̂�) the

value of the Gaussian curvature of the particle surface � at the

point P� (Pÿ), where the unit normal m̂, pointing outward to

the particle, is parallel (antiparallel) to q̂. Finally, �� (�ÿ) is the

algebraic distance from the origin to the plane tangent to � at

P� (Pÿ). The assumptions of strict convexity and smoothness

ensure that, whatever q̂, the (unit) normal to � is equal to q̂ at

only one point of � and that �G�P�> 0 whatever the consid-

ered point P of �. The ®rst of these properties implies that one

can write P � P�q̂� as well as q̂ � q̂�P�. Here, P�q̂� denotes the

point of � where the unit normal is equal to q̂, and q̂�P�
denotes the direction of reciprocal space equal to m̂�P�, the

normal to � at P. Moreover, P�q̂� and q̂�P� respectively span

the total surface � and all the directions of reciprocal space, as

q̂ ranges over the latter and P over �. De®ne now the function

��q̂� by setting ��q̂� � ���q̂�. The particle being ®nite and
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smooth, ��q̂� exists and is ®nite whatever q̂. Furthermore, one

has �ÿ�q̂� � ÿ��ÿq̂� because, in de®ning ���q̂� and �ÿ�q̂�, the

distances of the tangent planes from the origin are evaluated

along the straight line oriented along q̂ and going through the

origin. This de®nition also implies that ���q̂�>�ÿ�q̂�, what-

ever q̂. After substituting (4) into (2), the leading asymptotic

behaviour of the particle form factor reads

F�qq̂� � 4�2

q4

�
1

�G�q̂�
� 1

�G�ÿq̂� �
2 cos�q���q̂� � ��ÿq̂���
��G�q̂��G�ÿq̂��1=2

�
� o�qÿ4�:

�5�
As expected, this expression is centrosymmetric since it is the

asymptotic leading term of the Fourier transform of the auto-

convolution of a real function. It simpli®es further in the case

of a centrosymmetric particle. In this case, we have

�G�q̂� � �G�ÿq̂� and, after choosing a reference frame with its

origin set at the particle's centre, ��q̂� � ��ÿq̂�. Thus, for a

centrosymmetric particle one ®nds that

q4F�qq̂� � 8�2

�G�q̂�
f1� cos�2q��q̂��g � "; �6�

where " is a contribution approaching zero as q!1. The

three-dimensional (3D) Porod plot (Porod, 1951) of the form

factor is obtained by plotting q4F�qq̂� versus q. Hence, the 3D

Porod plot of the form factor of a homogeneous, strictly

convex, smooth, ®nite and centrosymmetric particle, which for

conciseness will be named simple in the following, must show,

in the outer q region, the analytic dependence reported on the

right hand side (r.h.s.) of (6). Each of the aforesaid particle

properties is related to a mathematical feature of (6). In fact,

the homogeneity is related to the fact that q4F�qq̂� does not

decrease as q increases. The smoothness and the ®niteness

re¯ect into the existence and the ®niteness of both �G�q̂� and

��q̂�. The strict convexity implies that the r.h.s. of (6) remains

®nite whatever the considered q̂ (it is recalled that a smooth

non-convex particle necessarily has points where �G � 0) and

that the tip of the vector q̂��q̂� spans a closed smooth (and

simply connected) surface as q̂ takes all possible values.

Finally, the central symmetry is responsible for the property

that, for each q̂, the amplitude of the oscillatory contribution

cos�2q��q̂�� is equal to the `constant' contribution, i.e. the

Porod term equal to 8�2=�G�q̂�. (For discussion of the case of

non-centrosymmetric particles, we refer to Appendix A.) This

property has an interesting implication: the r.h.s. of (6)

becomes in®nitesimal with " in a family of q regions that, as

q increases, approach the surfaces q � qN�q̂�, qN�q̂� being

de®ned by

qN�q̂���q̂� � �2N � 1��=2; �7a�
with N integer and suf®ciently large. Geometrically, each

qN�q̂� represents a surface of reciprocal space where the

intensity becomes closer and closer to zero as N increases.

Moreover, qN�q̂� is a smooth closed surface since, as reported

above, the same property applies to ��q̂�. Observe now that

both qN�q̂� and ��q̂� can be determined knowing at least

two next-neighbour regions of the 3D Porod plot where

q4F�qq̂� � 0. One concludes that by looking at the properties

of the 3D Porod plot of the form factor of a particle it is

possible to state whether the particle is simple or not. In this

way, the ®rst part of property I is proven.

To prove the second part, it will be shown that the knowl-

edge of ��q̂� allows us to determine the particle boundary. To

this aim, it is ®rst observed that from (7a) it follows that

��q̂� � �2N � 1��=2qN�q̂�; �7b�
so that the knowledge of the zero iso-intensity surfaces,

observed in the asymptotic region of the Porod plot, deter-

mines ��q̂�. [It is noted that a fair independence of the r.h.s. of

(7b) on N ensures that the considered q region is asymptotic.]

If the zero iso-intensity surfaces are smooth, ®nite and closed

and if the r.h.s. of (7b) is (almost) independent of N, then ��q̂�
refers to a simple particle. According to our previous remarks,

��q̂� is the distance from the origin to the plane tangent to the

particle surface at the point where the normal points along q̂.

Besides, as already reported, for a smooth and strictly convex

particle, the points of � can be parametrized in terms of q̂ as

P � P�q̂�, and this relation can be inverted as q̂ � q̂�P�. On the

other hand, q̂ can be parametrized as

q̂x � m̂x � cos�'� sin���; q̂y � m̂y � sin�'� sin���;
q̂z � m̂z � cos���; �8a�

where ' and � denote the polar angles of q̂. Consider the

following unit vectors:

ŝ � �cos�'� cos���; sin�'� cos���;ÿ sin����; �8b�
l̂ � �ÿ sin�'�; cos�'�; 0�; �8c�

Whatever ��; '�, vectors m̂��; '�, ŝ��; '� and l̂��; '� are

orthogonal to each other and such that l̂ � m̂� ŝ, the last

relation remaining true when the involved vectors are circu-

larly permuted. We also have

m̂;���; '� �
@m̂��; '�
@�

� ŝ��; '�; �9a�

m̂;'��; '� �
@m̂��; '�
@'

� sin���l̂��; '�; �9b�
ŝ;� � ÿm̂; ŝ;' � cos���l̂; �9c;d�
l̂;� � 0; l̂;' � ÿ sin���m̂ÿ cos���ŝ: �9e;f �

Let R�q̂� � R��; '� denote the position vector of P�q�, the

point of the particle surface where the normal is equal to q̂. On

general grounds, one can write

R��; '� � ���; '�m̂��; '� � ���; '�ŝ��; '� � ���; '�l̂��; '�;
�10�

where ���; '� and ���; '� are as yet unknown functions.

However, these must be such that the normal to the surface

de®ned by (10) be equal to m̂. By a well known formula of

differential geometry (Smirnov, 1970), the normal to the

surface is given by

m̂��; '� � R;� � R;'=jjR;� � R;'jj; �11�
where, with the same convention adopted in (9), R;� (R;')

denotes the partial derivative of R with respect to � ('). Thus,

it must result that m̂��; '� � R;���; '� � m̂��; '� � R;'��; '� � 0.



These two conditions, applied to the R;� and R;' expressions

obtained by evaluating the relevant derivatives of (10), yield

���; '� � �;���; '� �12a�
���; '� � �;'��; '�=sin���: �12b�

In this way, the knowledge of ���; '� implies that of ���; '� and

���; '�. Thus, R��; '� turns out to be fully determined and

property I fully proven. An analytical illustration of this result

is reported in Appendix B.

It is now remarked that, since the knowledge of ���; '� fully

determines the particle geometry, ���; '� must also determine

the Gaussian curvature of the particle surface. In fact, after

putting

A��; '� � ��� �;�2 �; B��; '� �
�
�;'

sin���
�
;�

; �13a;b�

C��; '� � �;'2 ÿ cos����;'
sin��� ; �13c�

D��; '� � �;'2

sin��� � sin����� cos����;�; �13d�

from (10) and (12), one gets

R;� � A��; '�ŝ��; '� � B��; '�l̂��; '�; �14a�
R;' � C��; '�ŝ�D��; '�l̂; �14b�
R;�2 � ÿAm̂� A;�ŝ� B;�l̂; �14c�
R;�' � ÿB sin���m̂� �A;' ÿ B cos����ŝ� �B;' � A cos����l̂;

�14d�
R;'2 � ÿD sin���m̂� �C;' ÿD cos����ŝ� �D;' � C cos����l̂

�14e�
and the Gaussian curvature in terms of ���; '� reads

�G�q̂� �
AD sin��� ÿ B2 sin2���

�A2 � B2��C2 �D2� ÿ �AC � BD�2 ; �15�

as it immediately follows from the previous expressions using

some basic formulae of differential geometry (Smirnov, 1970),

viz �G�q̂� � �LN ÿM2�=�EGÿ F2�, with E � R;� � R;�,

F � R;� � R;', G � R;' � R;', L � R;�2 � m̂, M � R;�' � m̂ and

N � R;'2 � m̂. One concludes that the knowledge of ��q̂� fully

determines the leading asymptotic term of the form factor of a

simple particle. Thus, from the Porod plot of the observed

intensity, one ®nds that the `constant' term (that in the

anisotropic case depends on q̂) in the asymptotic region is

PPD�q̂� � 8�2N p��n�2=�G�q̂� as it immediately follows by

combining (1) and (6). Since �G�q̂� is known in terms of ��q̂� by

(15), the knowledge of PPD�q̂� determines N p��n�2.
These results show that, for a dilute and monodisperse

system of simple particles that are equally oriented inside the

sample, the phase problem for the particle shape can uniquely

be solved when the scattering intensity is accurately known in

the asymptotic region. Actually, the assumption that the

system be diluted could be substituted with the weaker

assumption that the correlation length of the 3D radial

distribution function not be large. In such a case, the asymp-

totic region of the scattering intensity, in comparison to the

dilute case, moves farther in reciprocal space but could still be

observed. Then, the particle form could be uniquely deter-

mined, while the inner part of the scattering intensity deter-

mines, via a Fourier transformation, the radial distribution

function (Hansen & McDonald, 1986) no longer equal to one

as in the dilute case.

Two questions appear now quite natural. First, is it possible

to generalize property I to particles with a more general

shape? Second, which are the conditions to be ful®lled for

property I to have a practical usefulness? As explained in

Appendix A, the answer to the ®rst question is negative.

There, in fact, it is shown that, when lacking the central

symmetry, the particle forms can be obtained as the solutions

of a partial differential equation with speci®ed boundary

conditions, a rather awkward mathematical problem indeed.

On the contrary, the second question can be answered in the

af®rmative under favourable circumstances that will now be

detailed.

To this aim, we refer to Fig. 1 showing a `theoretical' illus-

tration of property I. Here is considered the case of a simple

particle bounded by the revolution surface obtained by

rotating the continuous line, shown in Fig. 1(a), around axis z.

The curve is the section of the particle surface with the plane

y � 0. Its analytic expression is

x � R�j�j� cos�j�j�; z � R�j�j� sin��� �16a;b�
with

R�j�j� � R0 exp�ÿ�j�j��; ÿ�j�j� � �2�G1 �G2j�j �G3�
2�;

�16c;d�
where

G1 � a�=4; G2 � ÿa�1ÿ b�=2�=3;

G3 � ÿab=4; a � ÿ6 log�R1=R0�=��1� b�=4���=2�3�
and � �2 �ÿ�=2; �=2�� is equal to the angle formed by

r � �x; z� with axis x. The ®gure refers to the choices b � ÿ1

and R1 � 1:1 u, while R0 � R��=2� � 1 u, u denoting an

arbitrary length. The broken and the dotted curves respec-

tively show the sections of u=��q̂� and �u2�G�q̂��ÿ1=4 with the

reciprocal-space plane qy � 0. The ®rst and the second curves

respectively show the shape of qN�q̂�, de®ned by (7b), and that

of the asymptotic iso-intensity line when the only monotonic

contribution is considered on the r.h.s. of (6). Fig. 1(b) shows

the two-dimensional (2D) Porod plot of the particle form

factor on the same plane with the scale of greys reported on

the right. The full 3D Porod plot as well as the full 3D shape of

u=��q̂� and �u2�G�q̂��ÿ1=4 are obtained by rotating Fig. 1(b) and

Fig. 1(a) around axis z, owing to the assumed rotational

symmetry. F�qq̂� was obtained by numerical integration of (3),

as appears evident from the small squares in the ®gure that

originate from making discrete the integral domains. The

(broken and continuous) black curves are the iso-values of

q4Fas�qq̂�, Fas�qq̂� denoting the asymptotic expression given by

(6), and range from 0 (broken curve) to 250 with a step of 50.

The ®gure makes it evident that the agreement between

q4F�qq̂� and q4Fas�qq̂� is already satisfactory beyond the ®rst

white annulus. Moreover, the shape of the broken curve of Fig.

Acta Cryst. (2002). A58, 541±546 Ciccariello � Anisotropic SAS and particle form determination 543

research papers



research papers

544 Ciccariello � Anisotropic SAS and particle form determination Acta Cryst. (2002). A58, 541±546

1(a) and that of the broken ones internal to the white annuli of

Fig. 1(b) are quite similar. The last curves are the plots of the

sections of qN�q̂�, with N � 2; 3; . . ., and de®ned by (7b), with

the plane qy � 0. The white annuli present in the 2D Porod

plot make an approximate determination of these curves

rather simple and unambiguous. Then the rotational symmetry

and the use of (7a) make the particle determination possible,

since the conditions required for the validity of property I are

met.

This example indicates that an approximate determination

of the particle form becomes practically possible if: (i) the

sample is known to consist of particles with a rotational axis

parallel to the detector plane, and if the 2D SAS intensity

approximately ful®ls the following two conditions: (ii) its 2D

Porod plot shows at least two `white' annuli where

q4I�qq̂� � 0, and (iii) it is possible to draw, inside each

annulus, a closed continuous curve such that the ratio

q2�q̂�=q1�q̂� � �2N � 1�=�2N ÿ 1� be independent of q̂ and

equal to the ratio of the next two odd integers. [Here, qi�q̂�,

with i � 1; 2, denote the distances, along direction q̂, from the

origin to the the inner and outer curve, respectively.] If these

conditions are reasonably ful®lled, ��q̂� is obtained by (7b) and

by the rotational symmetry. Then the knowledge of ��q̂�,
via (10), (12a), (12b), allows us to determine R�q̂�, the para-

metric equation of the particle surface. Moreover, one can

use the knowledge of the oscillation amplitude [viz

4N p��n�2�2=�G�q̂�], resulting from the best ®t of the consid-

ered 2D Porod plot, to check whether (15) is obeyed or not,

and to conclude that only in the ®rst case is the particle

determination reliable.

One concludes that property I can be practically useful for

analysing samples where conditions (i)±(iii) are obeyed. It is

now observed that samples obeying condition (i) have recently

been observed (Ciccariello, 2002). Moreover, the asymptotic

analysis of some isotropic intensities (Ciccariello & Sobry,

1999) indicates that condition (ii) holds practically true even in

the presence of a polydispersity smaller than 20% and one can

con®dently expect that (ii) applies also in the presence of a

small particle misalignment. Finally, condition (iii) is no longer

necessary when the mean particle size exceeds 200 AÊ because,

in this case, the SAS behaviour will be fairly independent of

interparticle interference in the outer q range �0:1ÿ 0:3� AÊ ÿ1.

The previous remarks indicate that samples obeying condi-

tions (i)±(iii), if not already found, might be found in the

future so as to make the application of property I practically

useful.

Summarizing, it has been shown that the asymptotic beha-

viour of the form factor allows us to say whether it is relevant

to a homogeneous, ®nite, smooth, strictly convex and centro-

symmetric particle or not and, in the af®rmative case, to

uniquely determine the latter form. When the particle is not

centrosymmetric, from the asymptotic behaviour of the form

factor it is possible to obtain a partial differential equation

with appropriate boundary conditions, whose solutions yield

all the possible particle forms able to reproduce the given

form factor. In favourable conditions, property I can usefully

be applied to determine the particle form from the asymptotic

behaviour of its scattering intensity. Finally, the fact that the

previous analysis apparently avoids the ambiguities related to

the crystallographic phase problem is not surprising because

the aforesaid procedure fully exploited the condition that the

solution refers to a homogeneous particle.

APPENDIX A
Non-centrosymmetric particles

We discuss now the case of a strictly convex particle that is not

centrosymmetric. The asymptotic behaviour, given by (5), can

be written as

q4F�qq̂� � 8�2

��q̂� ff ���q̂�� � cos�q��q̂��g � "; �17�

where we have put

��q̂� � ��G�q̂��G�ÿq̂��1=2; ��q̂� � ��G�ÿq̂�=�G�q̂��1=2;

�18a;b�

Figure 1
(a) The continuous line shows the section, with the plane y � 0, of the
considered particle surface which is a revolution surface around z. The
broken and the dotted curves represent u=��q̂� and �u2�G�q̂��ÿ1=4,
respectively. (b) The section with the reciprocal-space plane qy � 0 of
the 3D Porod plots of the corresponding exact (in grey) and asymptotic
form factors (tiny black lines). The values reported on axes x and z refer
to qxu and qzu, u being an arbitrary length unit.



and

��q̂� � ��q̂� � ��ÿq̂�; f �x� � �1=2��x� 1=x�: �18c;d�
It is observed that, in the physically relevant region �> 0,

f ��� is minimum at � � 1, where it results that f �1� � 1.

Consequently, as q varies, the expression inside square

brackets on the r.h.s. of (17) is never equal to zero except for

those q̂ directions where it may result that ��q̂� � 1, i.e.

�G�q̂� � �G�ÿq̂�. It is concluded that the absence of closed

surfaces of zeros in the Porod plot of the form factor is the

signature that the particle is not centrosymmetric. In principle,

the knowledge of F�qq̂� allow us to determine both �G�q̂� and

��q̂� by (17). In fact, by best-®tting the r.h.s. of (17) to the

given q4F�qq̂� at ®xed q̂ and large q's, one determines the

three quantities there present, i.e: X1 � f ���q̂��=��q̂�,
X2 � 1=��q̂� and X3 � ��q̂�. The ®rst two relations can be

solved and yield

�G�q̂� �
X1�q̂� � �X2

1 �q̂� ÿ X2
2 �q̂��1=2

X2
2 �q̂�

�19a�

�G�ÿq̂� � X1�q̂� � �X2
1 �q̂� ÿ X2

2 �q̂��1=2

X2
2 �q̂�

: �19b�

It is now observed that F�qq̂� is always an even function. This

fact implies that X1�q̂� � X1�ÿq̂� and X2�q̂� � X2�ÿq̂�, as

appears evident from their de®nitions. For (19a) to match

continuously into (19b), X2
1 �q̂� ÿ X2

2 �q̂� � 0 must hold for the

q̂'s that form closed curves on the unit sphere. Assume, for

simplicity, we have only one curve denoted by ÿ. In this case, a

solution is given by �G�q̂� � ����G �q̂� for the q̂'s lying on the left

of ÿ and by �G�q̂� � ��ÿ�G �ÿq̂� for the q̂'s on the right. Here

superscripts (�) and (ÿ) refer to the signs present in front of

the square roots in (19a) and (19b), respectively. The other

solution is �G�q̂� � ��ÿ�G �q̂� and �G�q̂� � ����G �ÿq̂�, respectively

on the left and on the right of ÿ. The existence of two solu-

tions, denoted in the following by superscripts 1 and 2, is

physically evident: if a particle with form function ��r� has

Gaussian curvature ��1�G �q̂�, then the particle with form func-

tion ��ÿr� will have Gaussian curvature ��2�G �q̂� � ��1�G �ÿq̂�,
while the autocorrelation functions, and consequently the

form factors, of ��r� and ��ÿr� coincide. One wonders now on

the possible implications that follow from the knowledge of

��q̂�. The lack of central symmetry does not allow one to

obtain ��q̂� from ��q̂�. On general grounds, one can only write

that

��q̂� � ��q̂�=2� ��q̂�; �20�
where ��q̂� is an arbitrary odd function of q̂. Equation (20) is

the general solution of the equation ��q̂� � ��ÿq̂� � ��q̂�.
Besides, we can choose the origin at the midpoint of the

particle diameter pointing along a particular direction q̂0, so

that ��q̂0� � 0. By the same considerations reported between

(7a) and (15), after adopting the same parametrization in

terms of ��; '�, (15) yields a partial differential equation for

���; '�. Its solutions, which ful®l the condition ��q̂0� � 0 and

yield a continuous and closed R��; '�, determine the particle

forms that reproduce the asymptotic behaviour of the

considered form factor. This appears to be the largest amount

of information that can be extracted from the asymptotic

behaviour of the form factor relevant to a strictly convex and

homogeneous particle. In order to emphasize the role of the

continuity argument, let us consider the case of a particle with

C1 symmetry along a particular axis which will be chosen as

polar axis. Then, ��q̂� � ���� and the former partial differ-

ential equation converts into an ordinary second-order

differential equation. Moreover, the oddness of ��q̂� becomes

���� � ÿ���ÿ �� and the origin can be ®xed by requiring that

��0� � 0. Equation (15) yields�
sin���

h����
2
� ����

i
� cos���

h�;�2 ���
2
� �;�2 ���

i�
�
�

����
2
� ���� ��;�2���

2
� �;�2 ���

�
� sin���
�G���

: �21�

The oddness of ���� implies that we have to solve (21) in the �
range �0; �=2�. The continuity of �G��� at � � 0 requires that

��;�2 ���=2� �;�2 ���� ! 0 as �! 0. This condition does not

determine the second initial condition, i.e. �;��0�, which

together with the condition ��0� � 0 would ensure a unique

solution. However, the continuity of ���� and the oddness of

���� require that ���=2� � 0. Thus, we must look for the

solutions of (21) that ful®l the two boundary conditions

��0� � 0 and ���=2� � 0. In our case, we know that this

problem must have at least one solution, viz the one relevant

to the particle form from which the form factor was evaluated.

But it can also happen that other solutions exist for ����, so as

to have more than one particle form with the given asymptotic

form factor. Even though we are not able to state that all the

����'s, solutions of the aforesaid problem, yield the given form

factor (in fact, it could happen that the form factor be

reproduced only asymptotically), certainly the particle forms

having the considered form factor are among these solutions.

APPENDIX B
Ellipsoidal particles

An illustration of the application of the anisotropic Porod law

to the case of ellipsoidal particles was recently presented by

Ciccariello et al. (2002). Using the analytic expression of the

form factor of this kind of particle, it is easy to obtain a rather

straightforward application of the procedure discussed in this

paper. In fact, according to (37) of the paper just quoted, the

form factor of an ellipsoid reads

Fe�qq̂� �
�

16�2�abc�2
q4�4

��
cos�q�� ÿ sin�q��

q�

�2

; �22�

where a, b and c are the ellipsoid's semiaxis lengths along axes

x, y and z, respectively, and � is de®ned as

� � ��a sin � cos ��2 � �b sin � sin��2 � �c cos ��2�1=2; �23�

� and � being the polar angles of q̂. The asymptotic leading

term of Fe�qq̂� is
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Fe�qq̂� �
�

8�2�abc�2
q4�4

�
�1� cos�2q���: �24�

It is identical to that of a sphere except for the fact that � is

not constant since it depends on � and � as described in (23).

The comparison of (24) with (6) shows that

��q̂� � ���; ��: �25�
It is now a matter of simple algebra to show that (10), together

with (12a), (12b) and (8a)±(8c), yields the equation

x2=a2 � y2=b2 � z2=c2 � 1

of the ellipsoid with semiaxes a, b and c.

References
Baker, D., Krukowski, A. E. & Agard, D. A. (1993). Acta Cryst. D49,

186±192.

Burge, R. E., Fiddy, M. A., Greenway, A. H. & Ross, G. (1976). Proc.
R. Soc. London Ser. A, 350, 191±212.

Cervellino, A. & Ciccariello, S. (2001). J. Phys. A: Math. Gen. 34,
731±755.

Ciccariello, S. (2002). Europhys. Lett. 58, 823±829.
Ciccariello, S., Schneider, J.-M., SchoÈ nfeld, B. & Kostorz, G. (2000).

Europhys. Lett. 50, 601±607.
Ciccariello, S., Schneider, J.-M., SchoÈ nfeld, B. & Kostorz, G. (2002). J.

Appl. Cryst. 35, 304±313.
Ciccariello, S. & Sobry, R. (1999). J. Appl. Cryst. 32, 590±599.
Debye, P., Anderson, H. R. & Brumberger, H. (1957). J. Appl. Phys.

28, 679±683.
Guinier, A. & Fournet, G. (1955). Small-Angle Scattering of X-rays.

New York: Wiley.
Hansen, J.-P. & McDonald, I. R. (1986). Theory of Simple Liquids,
x5.1. London: Academic Press.

Porod, G. (1951). Kolloid Z. 124, 83±114.
Requicha, A. A. G. (1980). Proc. IEEE, 68, 308±328.
Smirnov, V. N. (1970). Cours de MatheÂmatiques SupeÂrieures, Vol. II,

ch. V.2. Moscow: MIR.


